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Recap

• Modeling Process

• Mathematical Modeling of

– Mechanical Systems

– Electrical Circuits

– Analogous Systems
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Lecture Overview

• Mathematical Modeling of Electromechanical Systems

• Lagrangian Formulation

• Next week: Linearization and State-space Representation

3



Electromechanical Systems
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• Devices that carry out electrical operations by moving parts
• Manually operated switch, generator, microphone

• Devices that involve an electrical signal to create mechanical movement
• Relays, AC/DC motors, clocks, loudspeakers

• Piezoelectric materials (work in both ways)



Electromagnetic Induction and DC servomotor
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• DC servomotor: A machine that converts electrical energy into rotation
• stator and rotor

• Excitation (stator)
• Permanent magnets generate the magnetic field: magneto
• Electromagnetic coils generate the magnetic field: dynamo

• Rotor consists of armature winding

• Armature control: The field must be kept constant
• Either the stator current is constant, or the stator coils are replaced 

by permanent magnets
video



DC Servomotor (Lorentz Law)
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DC Servomotor
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Electromotive Force
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• Faraday’s Law of Induction: The  time derivative of the magnetic flux 
through a closed circuit induces an electromotive force in the circuit, which 
in turn drives a current.

• The electromotive force (emf) around a closed path is equal to the negative 
of the time rate of change of the magnetic flux enclosed by the path.

• Lenz’s Law: The induced current produces magnetic fields which tend to 
oppose the change in flux that induces such currents.

• Analogous to Newton’s third Law



Elements of Electromechanical Systems
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• Constant magnetic field: permanent magnets or constant current
• Torque Mm becomes directly proportional to the armature current 
• The induced voltage Em is directly proportional to the angular velocity

Armature
circuit Constant

field

q
J

motor-torque constant back-emf constant



Governing equations
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• Kirchhoff’s Law

• Newton’s Law

where

By taking time derivative of (2) and combining with (1), we obtain:

Time constants

(1)

(2)



Example
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Why Lagrange?
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• Newton – Given motion, deduce forces or given forces, solve for motion
• Works very well for simple systems (few variables)

• Real systems are complex (many variables)
• Vectoral equations are difficult to manage
• Constraints are hard to incorporate



Lagrangian Mechanics: Big Picture
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• Use kinetic and potential energy to solve for the motion
• From physical vector space to configuration space (scalars)
• No need to solve for accelerations
• Streamlined procedure

• Newton (F = ma) and Lagrangian methods produce the same equations!!



Euler-Lagrange Equations of Motion
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• Definition of the Lagrangian

𝐿 ≝ 𝑇 − 𝑉 (Kinetic Energy − Potential Energy)

• Euler-Lagrange Equation (or equation of motion) for a single coordinate

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑥̇ =

𝜕𝐿
𝜕𝑥

• The general form of Euler-Lagrange Equation for independent generalized 
coordinates  

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑞̇!

=
𝜕𝐿
𝜕𝑞!

𝑞!

𝑥



How to choose generalized coordinates?
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• The choice of coordinates must be independent and orthogonal

• Examples include 
• Cartesian -- 𝑥, 𝑦, 𝑧
• Cylindrical – 𝑟, 𝜃, 𝑧
• Spherical -- 𝑟, 𝜃, 𝜙

• The coordinates must locate the body with respect to an inertial reference 
frame. 

• Reminder: An inertial reference frame is one which is not accelerating.



Example: Mass-Spring System
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𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑥̇ =

𝜕𝐿
𝜕𝑥

𝑚𝑥̈ = −𝑘𝑥

𝐿 = 𝑇 − 𝑉 =
1
2
𝑚𝑥̇" −

1
2
𝑘𝑥"𝑘

𝑚

𝑥



Example: Simple Pendulum
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• A pendulum made of a rod with a mass 𝑚 on the end
• The length of the rod is 𝑙
• Assume that the motion takes place in a vertical plane
• Take the pivot point as datum
• Find equations of motion for the generalized coordinate 𝜃

𝑇 =
1
2𝑚(𝜔𝑙)

"=
1
2𝑚𝑙

"𝜃̇" 𝑉 = −𝑚𝑔𝑙 cos 𝜃

𝐿 =
1
2
𝑚𝑙"𝜃̇" +𝑚𝑔𝑙 cos 𝜃

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑥̇ =

𝜕𝐿
𝜕𝑥

𝜃̈ = −
𝑔
𝑙
sin 𝜃

𝜃

𝑙

𝑚



Example: Simple Pendulum
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• Kinetic energy calculated using Cartesian coordinates

𝑥 = 𝑙 sin(𝜃)

𝜃

𝑙

𝑚

𝑦 = 𝑙 − 𝑙 cos(𝜃)

𝑥̇ = 𝑙 cos(𝜃) 𝜃̇

𝑦̇ = 𝑙 sin(𝜃) 𝜃̇

𝑇 =
1
2𝑚𝑣

" =
1
2𝑚 𝑥̇" + 𝑦̇" =

1
2𝑚𝑙

"𝜃̇"



Example: Simple Pendulum
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𝜃

𝑙

𝑚

• Newton’s law gives two equations.

• The equation of motion determining the evolution of 𝜃

𝜃̈ = −
𝑔
𝑙 sin 𝜃

𝑚𝑙𝜃̈ = −𝑚𝑔 sin 𝜃

• The equation that determines the reaction force

𝐹# = 𝑚 𝑙𝜃̇" + 𝑔 cos 𝜃



Newton vs Lagrange Formulation
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• The Euler-Lagrange method requires scalar quantities. No need to 
perform vector rotations

• The Euler-Lagrange method does not make an explicit reference to the 
equilibrium reaction forces
• Disadvantage if we care about them: e.g. choosing a sufficiently 

strong rope
• Can be calculated using Lagrange multipliers



Example: Spring Pendulum
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• A pendulum made of a spring with a mass m on the end
• The equilibrium length of the spring is 𝑙
• Assume that the motion takes place in a vertical plane
• Find equations of motion for generalized coordinates 𝑥 and 𝜃

𝑇 =
1
2𝑚 𝑥̇" + 𝑙 + 𝑥 "𝜃̇"

𝑉 = −𝑚𝑔 𝑙 + 𝑥 cos 𝜃 +
1
2
𝑘𝑥"

𝐿 = 𝑇 − 𝑉 = $
"
𝑚 𝑥̇" + 𝑙 + 𝑥 "𝜃̇" +𝑚𝑔 𝑙 + 𝑥 cos 𝜃 − $

"
𝑘𝑥"



Example: Spring Pendulum
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𝐿 = 𝑇 − 𝑉 = $
"
𝑚 𝑥̇" + 𝑙 + 𝑥 "𝜃̇" +𝑚𝑔 𝑙 + 𝑥 cos 𝜃 − $

"
𝑘𝑥"

• Note that there are two generalized coordinates, 𝑥 and 𝜃.

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑥̇

=
𝜕𝐿
𝜕𝑥

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝜃̇

=
𝜕𝐿
𝜕𝜃

𝑚𝑥̈ = 𝑚 𝑙 + 𝑥 𝜃̇" +𝑚𝑔 cos 𝜃 − 𝑘𝑥 (1)

𝑑
𝑑𝑡

𝑚 𝑙 + 𝑥 "𝜃̇ = −𝑚𝑔 𝑙 + 𝑥 sin 𝜃

𝑚 𝑙 + 𝑥 𝜃̈ + 2𝑚𝑥̇𝜃̇ = −𝑚𝑔 sin 𝜃 (2)

𝑚 𝑙 + 𝑥 "𝜃̈ + 2𝑚 𝑙 + 𝑥 𝑥̇𝜃̇ = −𝑚𝑔 𝑙 + 𝑥 sin 𝜃



How to handle external forces?
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• Non-conservative virtual work
• Forces that cannot be derived from a potential function V
• Externally applied forces, 𝑄! , fall into this category

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑞̇!

−
𝜕𝐿
𝜕𝑞!

= 𝑄!



Example: Force driven spring-mass system
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𝑘

𝑚

𝑥

𝐹(t)

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑥̇ −

𝜕𝐿
𝜕𝑥 = 𝐹

𝑚𝑥̈ = 𝐹 − 𝑘𝑥

𝐿 = 𝑇 − 𝑉 =
1
2𝑚𝑥̇

" −
1
2𝑘𝑥

"



Rayleigh’s Dissipation Function
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• The potential function for viscous forces is called Rayleigh dissipation 
function (has no physical meaning, only works for linear damping)

• The Rayleigh dissipation function for a single linear damper is given by

𝐷 =
1
2𝑓𝑥̇

"

where f is the damping coefficient and x is the displacement from inertial 
ground

• The most complete form of Lagrange’s Equation is 

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑞̇!

−
𝜕𝐿
𝜕𝑞!

+
𝜕𝐷
𝜕𝑞̇!

= 𝑄!



Example: Spring-mass-damper system
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• A planar pendulum with length l and 
mass m is restrained by a linear 
spring of spring constant k and a 
linear damper of damping coefficient 
c is shown on the right. The upper 
end of the rigid and massless link is 
supported by a frictionless joint.

• Derive the equations of motion for 
the generalized coordinate 𝜃.



Example: Spring-mass-damper system
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𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑞̇!

−
𝜕𝐿
𝜕𝑞!

+
𝜕𝐷
𝜕𝑞̇!

= 𝑄!

𝐿 = 𝑇 − 𝑉 =
1
2𝑚 𝑙𝜃̇ " +𝑚𝑔𝑙 cos 𝜃 −

1
2𝑘 𝑏𝜃 "

𝑇 =
1
2
𝑚 𝑙𝜃̇ " 𝐷 =

1
2 𝑐 𝑎𝜃̇

"
𝑉 = −𝑚𝑔𝑙 cos 𝜃 +

1
2
𝑘 𝑏𝜃 "

𝑞 = 𝜃

𝑚𝑙"𝜃̈ + 𝑐𝑎"𝜃̇ + 𝑚𝑔𝑙 sin 𝜃 + 𝑘𝑏"𝜃 = 0
Equation of motion:

For small 𝜃, we can linearize this equation as  

sin 𝜃 ≈ 𝜃 𝑚𝑙"𝜃̈ + 𝑐𝑎"𝜃̇ + 𝑚𝑔𝑙 𝜃 +𝑘𝑏"𝜃 = 0



Example: Spring-mass-damper system
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𝑇 =
1
2 𝑀$𝑥̇$" +𝑀"𝑥̇"" 𝑉 =

1
2 𝐾$𝑥$" + 𝐾" 𝑥" − 𝑥$ "

𝐷 =
1
2
𝐶$𝑥̇$" + 𝐶" 𝑥̇" − 𝑥̇$ " 𝑄" = 𝑓(𝑡)

𝑞$ = 𝑥$

𝑞" = 𝑥"



Example: Spring-mass-damper system
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𝑀$𝑥̈$ + 𝐶$ + 𝐶" 𝑥̇$ − 𝐶"𝑥̇" + 𝐾$ + 𝐾" 𝑥$ − 𝐾"𝑥" = 0

𝑞$ = 𝑥$

𝑞" = 𝑥"

𝑀"𝑥̈" − 𝐶"𝑥̇$ + 𝐶"𝑥̇" − 𝐾"𝑥$ +𝐾" 𝑥" = 𝑓(𝑡)



Principle of Stationary Action
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Consider the quantity,

• S is called the action. It is a functional with dimensions of (Energy) x (Time). 

• S can be thought of as a function with an infinite number of values, namely 
all the x(𝑡) ranging from t1 to t2.

• Consider a function x(𝑡) with its end points fixed, that is x 𝑡" = 𝑥" and 
x 𝑡# = 𝑥#, where 𝑥" and 𝑥# are given. 

• What function x(𝑡) yields a stationary value of S? A stationary value is a 
local minimum, maximum, or saddle point.

𝑆 ≡ X
%!

%"
𝐿 𝑥, 𝑥̇, 𝑡 𝑑𝑡



Principle of Stationary Action
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For example, consider a ball dropped from rest, and consider the function 
y(𝑡) for 0 ≤ 𝑡 ≤ 1. Assume that we know that y 0 = 0 and y 1 = −𝑔/2 .

Which function shown below would generate a stationary value for S?



Principle of Stationary Action
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If the function 𝑥$(𝑡) yields a stationary value (that is a local minimum, 
maximum, or saddle point) of S, then

Note that we are considering the class of functions whose endpoints are 
fixed.

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑥̇&

=
𝜕𝐿
𝜕𝑥&

The path of a particle is the one that yields a stationary value of the action

Remark: Physical systems mostly act in a way to produce the least action.

Hamilton’s principle



Additional Concepts
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• Forces of constraints, degrees of freedom

• Calculus of variations

• Virtual Work and D’Alembert’s Principle

• Conservation laws and symmetry

• Noether’s Theorem: For each symmetry of the Lagrangian, there is a 
conserved quantity.



Newton’s vs Lagrange’s Methods: Summary Table
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