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Recap

Modeling Process
Mathematical Modeling of
— Mechanical Systems

— Electrical Circuits
— Analogous Systems




| ecture Overview

* Mathematical Modeling of Electromechanical Systems

* Lagrangian Formulation

* Next week: Linearization and State-space Representation




Electromechanical Systems

* Devices that carry out electrical operations by moving parts
* Manually operated switch, generator, microphone

* Devices that involve an electrical signal to create mechanical movement
* Relays, AC/DC motors, clocks, loudspeakers

* Piezoelectric materials (work in both ways]
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Electromagnetic Induction and DC servomotor

DC servomotor: A machine that converts electrical energy into rotation
* stator and rotor

Excitation (stator)
* Permanent magnets generate the magnetic field: magneto
* Electromagnetic coils generate the magnetic field: dynamo

Rotor consists of armature winding

Armature control: The field must be kept constant
* Either the stator current is constant, or the stator coils are replaced
by permanent magnets
video




DC Servomotor (Lorentz Law]

When electric current
passes through a coil in
a magnetic field, the
magnetic force
produces a torque

Magnetic force

F=ILB
acts perpendicular
to both wire and
magnetic field

Electric
current supplied I
externally through i
a commutator
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DC Servomotor

When electric current
passes through a coil in
a magnetic field, the
magnetic force
produces a torque
W which turns the
DC motor

Torque = force"“‘.’ X lever arm

- (ILB)[%J sin® x 2 sides

= |LBW sin 8 =IBAsin B8
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Electromotive Force

* Faraday’s Law of Induction: The time derivative of the magnetic flux
through a closed circuit induces an electromotive force in the circuit, which
in turn drives a current.

* The electromotive force [emf) around a closed path is equal to the negative
of the time rate of change of the magnetic flux enclosed by the path.

* Lenz’s Law: The induced current produces magnetic fields which tend to
oppose the change in flux that induces such currents.
* Analogous to Newton's third Law

N w(\z{ S “TT dt




Elements of Electromechanical Systems

* (Constant magnetic field: permanent magnets or constant current
* Torque M,, becomes directly proportional to the armature current
* The induced voltage £, is directly proportional to the angular velocity

M,=K_i, E,=K_6
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Governing equations

 Kirchhoff's Law

| di__

lmRm+LmE+Em_um=O (1)

* Newton’s Law
Jo=K_i,—f® where @©=0 (2)
By taking time derivative of (2] and combining with (1], we obtain:
Jé> = KmLi[um - KL(Ja) + fO)R,_— Kma)} ~ fo
m m

T K2 K _J _ _ Ly
’L'Cd)+(1+—c)d)+(1+ m)a)z—mum TC_} =R

Time constants
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Example

Consider the electromechanical system depicted below. A running rodent provides the input torque
T for the electric generator by spinning a wheel. The rotation of the wheel generates voltage £, that
is linearly proportional to the angular velocity w. A current ¢ starts to flow through the load circuit
with resistors of resistances ; and Ry as well as an inductor with inductance L. The current, in
return, induces a back-torque denoted by 73 that is linearly proportional to the current and resists the
motion of the wheel. The generator and back-torque constants are given by /{'; and K}, respectively.
The wheel has an inertia denoted by .J while fr represents the rotational viscous damping coefficient
of the shaft.
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Why Lagrange?

* Newton - Given motion, deduce forces or given forces, solve for motion
* Works very well for simple systems (few variables]

Rotating Launcher Spring mass system A
o &
°° A Vo -
mg + -+
X, X,

* Real systems are complex ([many variables]
* Vectoral equations are difficult to manage
* (Constraints are hard to incorporate
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Lagrangian Mechanics: Big Picture

* Use kinetic and potential energy to solve for the motion

* From physical vector space to configuration space [scalars]
* No need to solve for accelerations

* Streamlined procedure

* Newton (F = ma) and Lagrangian methods produce the same equations!!
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Euler-Lagrange Equations of Motion

* Definition of the Lagrangian

L = T —V (Kinetic Energy — Potential Energy)

* Euler-Lagrange Equation (or equation of motion] for a single coordinate x
d (OL) oL
dt\ox/ 0x

* The general form of Euler-Lagrange Equation for independent generalized
coordinates q;

d (6L)_ oL
dt\dg;) 9dq;
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How to choose generalized coordinates?

* The choice of coordinates must be independent and orthogonal

* Examples include
* (Cartesian-x,y,z
* Cylindrical - 1,0, z
e Spherical-1,0, ¢

* The coordinates must locate the body with respect to an inertial reference
frame.

* Reminder: An inertial reference frame is one which is not accelerating.

15



Example: Mass-Spring System

x 1, 1 .,
/ I \\ L=T—V=me —Ekx
NE,
§ d (0L _aL
50 =

mx = —kx
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Example: Simple Pendulum

* A pendulum made of a rod with a mass m on the end

The length of the rod is [

Assume that the motion takes place in a vertical plane
Take the pivot point as datum

Find equations of motion for the generalized coordinate 6

1 :
T = Em(a)l)2= Emlze2 V =—mglcos@

1 :
L = Emlzez + mgl cos @

i(—) — §=—Zsing
0x

oL\ oL

dt -~ Ox [
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Example: Simple Pendulum

* Kinetic energy calculated using Cartesian coordinates

x = l'sin(6) x = lcos(6) 0
y =1—1cos(0) y = lsin(0) 6
m 1 1

1 L]
T2 w2 g w2 122
T—va 2m(x + y4) 2ml@

18



Example: Simple Pendulum

* Newton’s law gives two equations.

* The equation of motion determining the evolution of 6

mlf = —mgsing® =—fp 6= —%sin@

m * The equation that determines the reaction force

Fr =m(16% + g cos9)
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Newton vs Lagrange Formulation

* The Euler-Lagrange method requires scalar quantities. No need to
perform vector rotations

* The Euler-Lagrange method does not make an explicit reference to the
equilibrium reaction forces

* Disadvantage if we care about them: e.g. choosing a sufficiently
strong rope

* (Can be calculated using Lagrange multipliers
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Example: Spring Pendulum

A pendulum made of a spring with a mass m on the end

The equilibrium length of the spring is [
Assume that the motion takes place in a vertical plane
Find equations of motion for generalized coordinates x and 6

1 .
T = Em(a’cz + (I + x)%6?)

m

1
V=-mg(l+x)cosf + Ekx2

L=T-V =%m(3’c2 + (I +x)?02) + mg(l + x) cos 0 —%kx2
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Example: Spring Pendulum

L=T-V =%m(9’cz + (I +x)26%) + mg(l + x) cos 0 —%kx2

* Note that there are two generalized coordinates, x and 6.

d (0L\ 0L

—( ) —Pp mi=m(l+x)0%+mgcosf —kx (1)
dt \0x dx

d (0L\ OL d .

S ey _ Y a 25Y _ |

dt (ag’) 00 > dt (m( + x)?6) mg(l + x)sin6

m(l + x)?0 + 2m(l + x)x6 = —mg(l + x) sin @

m(l + x)0 + 2mx6 = —mg sin 6 (2)
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How to handle external forces®?

* Non-conservative virtual work
* Forces that cannot be derived from a potential function V
» Externally applied forces, Q;, fall into this category

d (aL) oL

dt\aq;) " g~
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Example: Force driven spring-mass system

k

— (1)

W7

L=T V—1 % 1k2
= = zmx 5 X
d (aL) oL B
dt\ox) ox

mx =F — kx
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Rayleigh’s Dissipation Function

* The potential function for viscous forces is called Rayleigh dissipation
function (has no physical meaning, only works for linear damping]

* The Rayleigh dissipation function for a single linear damper is given by
1
D == fx*
> )
where f is the damping coefficient and x is the displacement from inertial

ground

* The most complete form of Lagrange’s Equation is
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Example: Spring-mass-damper system

* A planar pendulum with length | and
mass m is restrained by a linear
spring of spring constant k and a
linear damper of damping coefficient
c is shown on the right. The upper
end of the rigid and massless link is
supported by a frictionless joint.

* Derive the equations of motion for
the generalized coordinate 6.

26



Example: Spring-mass-damper system

d(aL) aL+aD_Q _ g
at\aq;)  aq;  0q; ° 1

1 . 1 1 .
T = Em(l@)z V = —mgl cos(0) +Ek(b6)2 D = ic(ae)z

1 : 1
L=T-V = Em(l@)z + mgl cos(6) —Ek(bﬁ)z

Equation of motion:
ml%0 + ca?6 + mglsin(0) + kb%6 = 0

For small 8, we can linearize this equation as

sin(0) 0 > ml?0 + ca?6 + mglB +kb?6 =0
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Example: Spring-mass-damper system

X; X3
> —>
) K, K, 1) d1 = X1
I NANA— - AANA— |
2 = M, T My = 4z = X3
/ - —
C, G,
1. . 1
T = 2 (M1X12 + szzz) V= 2 [K1x17 + K (xp — x1)7]

D = % [C1%1% + Co (3, — %1)?] Q2 = f(t)
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Example: Spring-mass-damper system

SONSNANNANN

X; X,
—> >
K K, f11) d1 = X1
] 1\4] ] ng » > = X3
C, C,

Mljél + (Cl + Cz)xl - CZ').CZ + (Kl + Kz)xl - szz — O

MyXy — Coxq + Coxy — Koxy +K; x5 = f(t)
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Principle of Stationary Action

Consider the quantity,

ts
SE[ L(x,x,t)dt
t

1

* Sis called the action. It is a functional with dimensions of (Energy] x (Time).

* S can be thought of as a function with an infinite number of values, namely
all the x(t) ranging from t, to to.

» Consider a function x(t) with its end points fixed, that is x(t;) = x; and
x(t,) = x,, where x4 and x, are given.

* What function x(t) yields a stationary value of S? A stationary value is a
local minimum, maximum, or saddle point.
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Principle of Stationary Action

For example, consider a ball dropped from rest, and consider the function
y(t) for 0 < t < 1. Assume that we know that y(0) = 0 andy(1) = —g/2.

Which function shown below would generate a stationary value for 57

y

31



Principle of Stationary Action

If the function x,(t) yields a stationary value [that is a local minimum,
maximum, or saddle point] of S, then

d (E)L)_ oL
dt ~ 9x,

0%q

Note that we are considering the class of functions whose endpoints are
fixed.

Hamilton’s principle

The path of a particle is the one that yields a stationary value of the action

Remark. Physical systems mostly act in a way to produce the least action.
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Additional Concepts

Forces of constraints, degrees of freedom
* (alculus of variations

* Virtual Work and D’Alembert’s Principle

* Conservation laws and symmetry

* Noether’s Theorem: For each symmetry of the Lagrangian, there is a
conserved quantity.
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Newton’s vs Lagrange’s Methods: Summary Table

Newton’s (Direct Approach) Lagrange’s (Indirect Approach)

Accelerations required Velocities required

Generally vectors required Generally scalars required

Free-body Diagrams useful Free-body diagrams not useful

All forces considered Workless forces (constraints) forces
not considered

All forces handled via same Conservative and non-conservative

expression forces handled separately

Intermediate forces more readily Intermediate forces less readily

available available




